Exercise 3

Find $(-8-8 \sqrt{3} i)^{1 / 4}$, express the roots in rectangular coordinates, exhibit them as the vertices of a certain square, and point out which is the principal root.

$$
\text { Ans. } \pm(\sqrt{3}-i), \pm(1+\sqrt{3} i) .
$$

Solution

For a nonzero complex number $z=r e^{i(\Theta+2 \pi k)}$, its fourth roots are

$$
z^{1 / 4}=\left[r e^{i(\Theta+2 \pi k)}\right]^{1 / 4}=r^{1 / 4} \exp \left(i \frac{\Theta+2 \pi k}{4}\right), \quad k=0,1,2,3 .
$$

The magnitude and principal argument of $-8-8 \sqrt{3} i$ are respectively

$$
r=\sqrt{(-8)^{2}+(-8 \sqrt{3})^{2}}=16 \quad \text { and } \quad \Theta=\tan ^{-1} \frac{-8 \sqrt{3}}{-8}-\pi=-\frac{2 \pi}{3},
$$

so

$$
(-8-8 \sqrt{3} i)^{1 / 4}=16^{1 / 4} \exp \left(i \frac{-\frac{2 \pi}{3}+2 \pi k}{4}\right), \quad k=0,1,2,3 .
$$

The first, or principal, root $(k=0)$ is

$$
(-8-8 \sqrt{3} i)^{1 / 4}=16^{1 / 4} e^{-i \pi / 6}=2\left(\cos \frac{\pi}{6}-i \sin \frac{\pi}{6}\right)=2\left(\frac{\sqrt{3}}{2}-i \frac{1}{2}\right)=\sqrt{3}-i
$$

the second root $(k=1)$ is

$$
(-8-8 \sqrt{3} i)^{1 / 4}=16^{1 / 4} e^{i \pi / 3}=2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)=2\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)=1+\sqrt{3} i
$$

the third root $(k=2)$ is

$$
(-8-8 \sqrt{3} i)^{1 / 4}=16^{1 / 4} e^{i 5 \pi / 6}=2\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)=2\left(-\frac{\sqrt{3}}{2}+i \frac{1}{2}\right)=-\sqrt{3}+i
$$

and the fourth root $(k=3)$ is

$$
(-8-8 \sqrt{3} i)^{1 / 4}=16^{1 / 4} e^{i 4 \pi / 3}=2\left(\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}\right)=2\left(-\frac{1}{2}-i \frac{\sqrt{3}}{2}\right)=-1-\sqrt{3} i .
$$

The roots are drawn below in the complex plane.

